BAHAN AJAR ANALISIS REGRESI


Oleh: ENDANG LISTYANI



ANALISIS REGRESI

Dalam kehidupan sehari-hari sering kali ingin diketahui hubungan antar peubah, misalnya hubungan antara : prestasi belajar dengan IQ, tingkat pendidikan ibu dengan gizi balita, dan sebagainya. Umumnya suatu peubah bersifat mempengaruhi peubah yang lainnya. Peubah yang mempengaruhi disebut peubah bebas sedangkan yang dipengaruhi disebut sebagai peubah tak bebas atau peubah terikat.
Secara kuantitatif hubungan antara peubah bebas dan peubah terikat dapat dimodelkan dalam suatu persamaan matematik, sehingga dapat diduga nilai suatu peubah terikat bila diketahui nilai peubah bebasnya. Persamaan matematik yang menggambarkan hubungan antara peubah bebas dan terikat sering disebut persamaan regresi.
Persamaan regresi dapat terdiri dari satu atau lebih peubah bebas dan satu peubah terikat. Persamaan yang terdiri dari satu peubah bebas dan satu peubah terikat disebut persamaan regresi sederhana, sedangkan yang terdiri dari satu peubah terikat dan beberapa peubah bebas disebut persamaan regresi berganda. Regresi dapat dipisahkan menjadi regresi linear dan regresi non linear
Misalkan kita mempunyai sejumlah data berpasangan {(xi , yi), i = 1, 2, 3, . . ., n} data itu dapat diplotkan atau digambarkan pada bidang Kartesius yang disebut sebagai diagram pencar atau diagram hambur. Dari diagram pencar dapat diperkirakan hubungan antara peubah-peubah itu apakah mempunyai hubungan linear atau tidak linear.

13.1 Regresi Linear Sederhana
Regresi linear sederhana adalah persamaan regresi yang menggambarkan hubungan antara satu peubah bebas (X) dan satu peubah  tak bebas (Y), dimana hubungan keduanya dapat digambarkan sebagai suatu garis lurus. Hubungan kedua peubah tersebut dapat dituliskan dalam bentuk persamaan:
Yi = b0 + b1 +  ei...............                                                                               (13.1)
Y = Peubah tak bebas, X = Peubah bebas, b0 = intersep/perpotongan dengan sumbu tegak, b1 = Kemiringan/gradien, ei error yang saling bebas dan menyebar normal N(0,s2) i = 1, 2, …, n.
Dalam kenyataan seringkali kita tidak dapat mengamati seluruh anggota populasi, sehingga hanya mengambil sampel misalkan sampel itu berukuran n dan ditulis sebagai {(xi , yi), i = 1, 2, 3, . . ., n}. Persamaan yang diperoleh adalah dugaan dari persamaan (12.1) dan dapat dituliskan sebagai: 
 = b0 + b1 Xi                                                                                             (13.2)   
b0  adalah penduga untuk b0, dan b1 adalah penduga untuk b1.
Untuk peubah bebas xi nilai pengamatan yi tidak selalu tepat berada pada garis = b0 + b1(garis regresi populasi) atau  = b0 + b1 Xi   (garis regresi sampel)

 


                                                       yi                                 = b0 + b1 X
                                                            ei
                                                            






                                                                                                    
                 

          Gambar13.1 Garis penduga hubungan antara peubah X dan Y
 


Terdapat simpangan sebesar ei (untuk sampel) atau  (untuk populasi), sehingga
Yi =  + ei     atau   Yi =  + 
atau
Yi = b0 + b1 X + ei          (model regresi sampel)
Yi =b0 + b1 +     (model regresi populasi)



Anggapan/asumsi  dalam analisis regresi linear sederhana dengan model
Yi =bo + b1 +     adalah:.
1)  merupakan galat acak yang menyebar normal dengan E() = 0 dan
     Var() =   untuk semua i
2) Yi menyebar normal dengan E(Yi) = bo + b1 dan Var(Yi) =  untuk semua i

Pendugaan Parameter b0 dan b1
            Untuk menduga nilai parameter b0 dan b1 terdapat bermacam-macam metode, misalnya metode kuadrat terkecil (least square method), metode kemungkinan maksimum (maximum likelihood method), metode kuadrat terkecil terboboti (weighted least square method), dsb.
            Disini metode yang digunakan adalah metode kuadrat terkecil, karena mudah dikerjakan secara manual. Prinsip dasar metode kuadrat terkecil adalah meminimumkan jumlah kuadrat simpangan atau Jumlah Kuadrat Galat
 (JKG)==
Dengan menggunakan bantuan pelajaran kalkulus, diperoleh nilai dugaan parameter regresi sebagai berikut:

          




Dengan demikian dapat diperoleh hubungan;




Contoh 13.1
Diketahui data percobaan

Subjek i
1
2
3
4
5
6
7
8
9
xi
1,5
1,8
2,4
3,0
3,5
3,9
4,4
4,8
5,0
yi
4,8
5,7
7,0
8,3
10,9
12,4
13,1
13,6
15,3

Tentukan persamaan regresi dugaan

Jawab
Dengan menggunakan kalkulator dapat dengan mudah dihitung
= 30,3                = 91,1                 = 345,09        

= 115,11           = 3,3667                  = 10, 1222


bo = 10,1222 – (2,9303)(3,3667) = 0,2568

Jadi persamaan regresi dugaan  = 0,26 + 2,93X


Pengujian terhadap Model Regresi

Proses selanjutnya setelah melakukan pendugaan parameter model regresi sederhana adalah pengujian terhadap model regresi apakah signifikan atau tidak, yang dapat dilakukan dengan dua cara yaitu ANAVA dengan uji F dan uji parsial dengan uji t.

Uji bagi b1=0 lawan b1¹0  melalui ANAVA
Hipotesis
                  H0 : b1=0 (Tidak ada hubungan linear antara X dan Y)
                  H1 : b1¹ 0 (Ada hubungan linear antara X dan Y)

Tabel 13.1.  Anava untuk pengujian pada model regresi linear sederhana

Sumber Keragaman
db
JK
KT
Fhit
Ftabel
Regresi

Galat
1

n-2
JKR

JKG
KTR=JKR/1

 KTG=JKG/(n - 2)
Fhit=KTR/KTG
Fα(1,n-2)
Total
n-1
JKT




Ho  ditolak jika Fhit  > Ftabel,  yang berarti model regresi signifikan atau ada hubungan liner anatara X dan Y

Keterangan

 












  1. Uji bagi b1=0 lawan b1¹0  melalui uji t
     
Hipotesis
                  H0 : b1=0 (Tidak ada hubungan linear antara X dan Y)
                  H1 : b1¹ 0 (Ada hubungan linear antara X dan Y)



Statistik uji adalah :

 


dengan



Kriteria keputusan :

                    H0  ditolak jika |thit|> tα/2(n-2)

  1. Uji bagi b0=0 lawan b0 ¹0  melalui uji t
     
Hipotesis
                  H0 : b0=0
                  H1 : b0¹ 0

Statistik uji adalah :

 


dengan




Kriteria keputusan :

                    H0  ditolak jika |thit|> tα/2(n-2)

Perhitungan untuk uji hipotesis menggunakan  data Contoh 13.1.

Dari perhitungan sebelumnya telah diperoleh

= 30,3                = 91,1                 = 345,09        

= 115,11                                                                                = 3,3667                  = 10, 1222
 b0 = 0,2568      b1 = 2,9303

Dengan demikian diperoleh

JKT =  1036,65 - 9. (10,1222)2 = 114,52
JKG = 1036,65 - (0,2568) 91,1 – (2,9303) 345,09 = 2,0383
JKR = 945,55 –2,0383 = 112,4813

Tabel anava untuk data tersebut disajikan dalam Tabel 13.2.

Tabel 13.2. Anava untuk data pada Contoh 13.1

Sumber Keragaman
db
JK
KT
Fhit
Ftabel
Regresi

Galat
1

7
112,4813

2,0383
 KTR=112,4813

  KTG=0,2911
Fhit=386,2885
F0,05(1,7) =5,59
Total
8
114,52





Berdasarkan hasil pada Tabel 13.2 diperoleh nilai F hitung lebih besar daripada nilai F tabel, sehingga H0 ditolak. Jadi ada hubungan linear antara variabel X dan Y.
Untuk uji parsial perlu dihitung terlebih dahulu nilai
 


dan
                         0,284
Jadi untuk uji signifikansi koefisien  b1
thit =
sedangkan untuk uji signifikansi konstanta diperoleh

thit =
Karena t tabel  adalah t0,025;7 = 2,365 maka H0 ditolak untuk uji koefisien  b1 dan H0 diterima untuk uji signifikansi konstanta.




Regresi Ganda

Regresi linear ganda adalah persamaan regresi yang menggambarkan hubungan antara lebih dari satu peubah bebas (X) dan satu peubah  tak bebas (Y) Hubungan peubah-peubah tersebut dapat dituliskan dalam bentuk persamaan:

Y = Peubah tak bebas, X = Peubah bebas, b0 = intersep/perpotongan dengan sumbu tegak, b1, b2, ...., bp-1 = parameter model regresi, ei saling bebas dan menyebar normal N(0,s2) , i = 1, 2, …, n

Persamaan regresi dugaannya adalah


Hipotesis yang harus diuji dalam analisis regresi ganda adalah
H0 : b1 = b2 = … = bp-1=0
H1 : Tidak semua bk (k=1,2,…,p -1) sama dengan nol

Untuk melakukan pendugaan parameter model regresi ganda dan menguji signifikansinya dapat dilakukan dengan program SPSS 16.

Asumsi yang harus dipenuhi dalam analisis regresi ganda adalah :
  1. Tidak ada multikolinearitas (korelasi antara variabel independen)
  2. Heteroskedastisitas (variansi error konstan)
  3. Normalitas (error  berdistribusi normal)
  4. Autokorelasi (error  bersifat acak)

Multikolinearitas
  1. Multikolinearitas atau kekolinearan ganda adalah terjadinya korelasi antar peubah bebas.
  2. Model regresi yang baik seharusnya tidak terjadi korelasi antar peubah bebas.
  3. Metode yang banyak digunakan untuk mendeteksi adanya multikolinearitas adalah faktor inflasi ragam (variance inflation factor/VIF)
  4. Multikolinearitas terjadi jika  nilai VIF > 10

Heteroskedastisitas
  1. Ragam galat diasumsikan konstan dari satu pengamatan ke pengamatan lain, hal ini disebut homoskedastisitas.
  2. Jika ragam galat berbeda disebut heteroskedastisitas.
  3. Model regresi yang baik adalah tidak terjadi heteroskedastisitas.
  4. Untuk mendeteksi heteroskedastisitas adalah dengan membuat plot nilai dugaan yang dibakukan (standardized predicted value) dengan sisaan yang dibakukan (studentized residual).
  5. Jika ada pola tertentu (bergelombang, melebar kemudian menyempit) maka terjadi heteroskedastisitas.
  6. Jika tidak ada pola jelas, serta titik-titik (sisaan) menyebar di atas dan di bawah angka 0 pada sumbu Y, maka tidak terjadi heteroskedastisitas.

Normalitas (error  berdistribusi normal)
  1. Untuk mendeteksi normalitas digunakan normal p-p plot.
  2. Jika titik-titik (sisaan) menyebar di sekitar garis diagonal dan mengikuti arah garis diagonal, maka model regresi memenuhi asumsi normalitas.
  3. Jika titik-titik (sisaan) menyebar jauh dari garis diagonal dan atau tidak mengikuti arah garis diagonal, maka model regresi tidak memenuhi asumsi normalitas

Autokorelasi.
  1. Bila dalam model regresi linear ganda ada korelasi antara galat pada periode t dengan galat pada periode t-1, maka dinamakan ada masalah autokorelasi.
  2. Model regresi yang baik adalah model regresi yang bebas dari autokorelasi.


Contoh 13.2
 Misalkan dipunyai data
Y
10
6
5
12
10
15
5
12
17
20
X1
1.3
2.0
1.7
1.5
1.6
1.2
1.6
1.4
1.0
1.1
X2
9
7
5
14
15
12
6
10
15
21

Akan dilakukan pendugaan dan pengujian parameter model regresi, serta uji asumsi dengan menggunakan SPSS 16.
  1. Cara memasukkan data dan melakukan analisis sama dengan pada regresi sederhana.
  2. Untuk memunculkan hasil uji asumsi pada kotak dialog statistics klik juga collinearity diagnostics baru continue, sebagaimana terlihat pada gambar berikut:




  1. Untuk melakukan uji asumsi pada residual klik plots, sehingga akan muncul kotak dialog :


  1. Masukkan ZPRED pada kotak X dan ZRESID pada kotak Y, dan beri tanda centang (Ö ) pada Normal probability plot, kemudian klik continue. Kembali ke kotak dialog awal, dan klik OK.

Hasil analisis dengan ANAVA adalah sebagai berikut:

ANOVAb
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
217.699
2
108.849
47.917
.000a
Residual
15.901
7
2.272


Total
233.600
9



a. Predictors: (Constant), VAR00003, VAR00002


b. Dependent Variable: VAR00001




Terlihat bahwa nilai signifikansi 0,000 < 1%, sehingga H0 ditolak, yang berarti ada hubungan linear antara variabel independen X1 dan X2 dengan variabel dependen Y.

Hasil uji parsial adalah sebagai berikut :
Coefficientsa
Model
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
Collinearity Statistics
B
Std. Error
Beta
Tolerance
VIF
1
(Constant)
16.406
4.343

3.778
.007


X1
-8.248
2.196
-.490
-3.756
.007
.572
1.749
X2
.134
.571
4.377
.003
.572
1.749
a. Dependent Variable: VAR00001






Karena nilai signifikansi 0,007 untuk konstanta dan VAR00002 dan 0,003 untuk VAR00003,  sehingga H0 ditolak untuk semua uji. Jadi konstanta b0 semua dan koefisien regresi b1, dan b2 signifikan.  Persamaan regresi dugaannya adalah :


Hasil uji asumsi multikolinearitas dapat dilihat pada nilai VIF, yaitu 1,749 < 10, sehingga dapat disimpulkan tidak ada multikolinearitas antara variabel X1 dan X2. Hasil uji normalitas dari error dapat dilihat pada output berikut

Karena plot mendekati garis diagonal, maka dapat disimpulkan error memenuhi asumsi normalitas.  Uji normalitas error juga dapat dilakukan dengan uji Kolmogorov-Smirnov

Hasil plot berikut menunjukkan tidak ada pola yang jelas atau berpola acak, sehingga dapat disimpulkan tidak terjadi heteroskedastisitas atau ragam galat konstan dan galat bersifat acak atau tidak ada autokorelasi .

           

Latihan 13.

  1. Suatu sampel acak terdiri atas 20 keluarga di suatu daerah, memberikan data sbb.:

X
15
20
25
20
25
30
16
15
25
20
Y
10
15
20
16
22
25
15
14
10
18

X
16
18
20
25
30
25
19
10
20
20
Y
12
15
15
20
25
23
16
8
15
17

X = pendapatan keluarga perbulan dalam ratusan ribu rupiah
Y = pengeluaran keluarga perbulan dalam ratusan ribu rupiah

a)   Jika diduga bahwa hubungan antara pendapatan keluarga dan pengeluaran
      keluarga  linear, tentukan persamaan regresi dugaannya
b) Bila dianggap asumsi-asumsi dalam analisis regresi linear terpenuhi, ujilah apakah ada hubungan antara pendapatan keluarga perbulan dan pengeluaran keluarga perbulan. Gunakan a = 0,05.


2. Suatu penelitian dilakukan terhadap 20 mahasiswa semester satu yang diambil  secara  acak  untuk menentukan apakah nilai mutu rata-rata (NMR) pada akhir tahun pertama (Y) dapat diprediksi dari nilai ujian masuk (X). Data yang diperoleh sbb.
X
5,5
4,8
4,7
3,9
4,5
6,2
6,0
5,2
4,7
4,3
Y
3,1
2,3
3,0
1,9
2,5
3,7
3,4
2,6
2,8
1,6

X
4,9
5,4
5,0
6,3
4,6
4,3
5,0
5,9
4,1
4,7
Y
2,0
2,9
2,3
3,2
1,8
1,4
2,0
3,8
2,2
1,5

a)      Jika hubungan antar NMR dan nilai ujian masuk dapat dinyatakan dengan garis linear, tentukan persamaan regresi linear dugaannya.
b)      Bila dianggap asumsi-asumsi dalam analisis regresi linear terpenuhi, ujilah apakah ada hubungan antara nilai ujian masuk dan nilai mutu rata-rata (NMR) pada akhir tahun pertama. Gunakan a = 0,05.
c)      Tentukan nilai dugaan untuk NMR jika nilai ujian masuk 6,0

3.      Bagian kepegawaian suatu perusahaan menggunakan 12 orang dalam suatu penelitian untuk menentukan hubungan antara nilai prestasi kerja (Y) dan nilai empat tes, yaitu  tes kemampuan di bidang IT (X1), kemampuan berbahasa Inggris (X2), kemampuan bekerja sama (X3), dan kemampuan berkomunikasi (X4). Datanya adalah sebagai berikut
Y
X1
X2
X3
X4
11,2
14,5
17,2
17,8
19,3
24,5
21,2
16,9
14,8
20,0
13,2
22,5
56,5
59,5
69,2
74,5
81,2
88,0
78,2
69,0
58,1
80,5
58,3
84,0
71,0
72,5
76,0
79,5
84,0
86,2
80,0
72,0
68,0
85,0
71,0
87,2
38,5
38,2
42,5
43,5
47,5
47,4
44,5
41,8
42,1
48,1
37,5
51,0
43,0
44,8
49,0
56,3
60,2
62,0
58,1
48,1
46,0
60,3
47,1
65,2
a.       Ujilah apakah ada hubungan linear antara nilai prestasi kerja (y) dan nilai empat tes, yaitu  tes kemampuan di bidang IT, kemampuan berbahasa Inggris, dan kemampuan bekerja sama, kemampuan berkomunikasi. Gunakan a = 0,05.
b.      Manakah diantara empat variable yang secara signifikan berpengaruh terhadap prestasi kerja?
c.       Berdasarkan hasil b) Tentukan persamaan regresi linear dugaannya.
d.      Lakukan uji asumsi dalam analisis regresi linear dan simpulkan hasilnya.

4.      Daya  rentang produk fiber sintetis diperkirakan berhubungan dengan persentase bahan katun dalam fiber, waktu pengeringan fiber. Hasil percobaan terhadap 10 potong fiber yang diproduksi dalam beberapa kondisi yang berbeda diberikan pada Tabel berikut
Y
X1
X2
213
220
216
225
235
218
239
243
233
240
13
15
14
18
19
20
22
17
16
18
2,1
2,3
2,2
2,5
3,2
2,4
3,4
4,0
4,
4.3

a.       Lakukan analisis regresi untuk menguji apakah ada hubungan linear antara persentase bahan katun dalam fiber dan waktu pengeringan dengan daya rentang fiber sintetis.
b.      Tentukan persaman regresi dugaannya.

Lakukan uji asumsi dalam analisis regresi linear dan simpulkan hasilnya.
Sonie Elbalarjani Muta'alim, Mahasiswa, Santri

Related Posts

0 Response to "BAHAN AJAR ANALISIS REGRESI "

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel